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We consider the two-scale refinement equation f(x)=;N
n=0 cnf(2x−n) with

; n c2n=; n c2n+1=1 where c0, cN ] 0 and the corresponding subdivision scheme.
We study the convergence of the subdivision scheme and the cascade algorithm
when all cn \ 0. It has long been conjectured that under such an assumption the
subdivision algorithm converge, and the cascade algorithm converge uniformly to a
continuous function, if and only if only if 0 < c0, cN < 1 and the greatest common
divisor of S={n: cn > 0} is 1. We prove the conjecture for a large class of refine-
ment equations. © 2001 Elsevier Science
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1. INTRODUCTION

The two-scale refinement equation

f(x)=C
n ¥ Z

cnf(2x−n), C
n

c2n=C
n

c2n+1=1 (1.1)

plays a central role in the construction of orthonormal wavelet bases and in
the subdivision scheme for curve and surface generations. An important
question is the continuity of the solutions f(x) and the convergence of the
corresponding subdivision scheme. We will assume that only finitely many
cn ] 0, which is the case for virtually all applications. It is well known that
under this assumption the refinement equation (1.1) has a unique (up to
scalar multiplication) compact solution f(x) in the sense of a tempered



distribution. In this paper we study the special class of refinement equa-
tions (1.1) in which all cn \ 0.

We first introduce some notations. For a given refinement equation (1.1)
the mask is the Laurent polynomial C(z) :=1

2 ; n cnzn. The support of C is
the set supp(C) :={n ¥ Z : cn ] 0}. We say the mask C is nonnegative if all
cn \ 0. A function f(x) ¥ L1(R) is the associated refinable function of the
refinement equation (1.1) if it satisfies (1.1) and >R f(x) dx=1. Not every
refinement equation has an associated refinable function, since the require-
ment f(x) ¥ L1(R) cannot be met in general. When it does, the associated
refinable function is unique and is compactly supported; see [DL1].

We shall study (1.1) primarily in conjunction with subdivision schemes.
A comprehensive discussion of subdivision schemes can be found in
[CDM]. The subdivision scheme relates to the refinement equation (1.1) as
follows: Start with a set of vectors {v0n: n ¥ Z} with each vkn ¥ Rm, and
recursively define the vectors {vkn : n ¥ Z} by

vkn=C
j ¥ Z

cn−2jv
k−1
j . (1.2)

We say that the subdivision scheme with mask C converges if for each
bounded set of vectors {v0n: n ¥ Z} there exists a continuous function
G: RQ Rm such that

lim
kQ.

sup
n ¥ Z

:G 1 n
2k
2− vkn :=0.

The function G(x) can be expressed as

G(x)=C
n ¥ Z

f(x−n) v0n, (1.3)

where f(x) is the associated refinable function of (1.1). By taking m=1
and v0n=dn, 0 one can easily check that the subdivision scheme (1.2) is
equivalent to the following cascade algorithm for finding the associated
refinable function f(x):

f0(x)=q[0, 1)(x)2, fk(x)=C
n ¥ Z

cnfk−1(2x−n). (1.4)

2 Observe that f0 is not continuous. In practice it is better to choose f0 to be the hat
function. The uniform convergence of the cascade algorithm are equivalent for both cases
[W].
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More precisely, the two schemes relate to each other by the formula vkn=
fk(n/2k). Therefore a subdivision scheme converges if and only if the
corresponding cascade algorithm converges uniformly to a continuous
function.

In this paper we study the convergence of subdivision schemes with
nonnegative masks. Such schemes arise in many practical applications. Let
C(z) be the nonnegative mask of the refinement equation (1.1) such that
supp(C) is finite. By applying a suitable translation we may without loss of
generality assume that supp (C) ı {0, 1, ..., N} with 0, N ¥ supp(C) for
some N \ 1. Equation (1.1) now becomes

f(x)=C
N

n=0
cnf(2x−n), C

n
c2n=C

n
c2n+1=1, (1.5)

where c0, cN ] 0. The convergence problem is stated as the following
conjecture:

Conjecture. Suppose that the refinement equation (1.5) satisfies
c0, cN ] 0 and all cn \ 0. Let C(z) be its mask. Then the subdivision scheme
with mask C converges if and only if

0 < c0, cN < 1 and gcd(n: n ¥ supp(C))=1. (1.6)

It is known that (1.6) is necessary for the convergence of the cascade
algorithm and the subdivision scheme; see e.g. [CDM] or [W]. The suffi-
ciency is still open and appears to be rather difficult. It has been discussed
extensively in Cavaretta, Dahmen, and Micchelli [CDM] and is stated as
an important unresolved problem. Various partial results have been
obtained. Micchelli and Prautzsch [MP1] show that the subdivision
scheme converges if supp(C)={0, 1, ..., N} for N \ 2. This condition is
weakened by Gonsor [G] to supp(C) ` {0, 1, N−1, N} for N \ 2.
Melkman [M] further relaxes the condition to supp(C) ` {0, p, q, p+q}
for some gcd(p, q)=1, who also shows that the subdivision scheme con-
verges if supp(C) contains two consecutive integers in addition to (1.6) with
N \ 2. It should be pointed out that the related results in [CDM] are all in
the higher dimensional setting. In such settings the problem is also studied
in Jia and Zhou [JZ], who prove that the convergence of the subdivision
scheme depends only on the support of the mask, not on the actual values
of the coefficients. An algorithm for checking the convergence is also given
in [JZ].
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A particularly interesting class of refinement equations (1.5) is those in
which supp(C) contains a single odd integer 0 < p < N, the simplest and
most intriguing example of which is

f(x)=af(2x)+f(2x−p)+(1−a) f(2x−N), (1.7)

where 0 < a < 1, N \ 2 is even, and gcd(p, N)=1. If this happens and if
condition (1.6) is met, the associated refinable function f(x) is interpola-
tory in the sense that

f(p)=1 and f(n)=0 for n ¥ Z0{p}. (1.8)

Interpolatory refinement equations are important for applications in com-
puter generated graphics, because the curve G(x) given by (1.3) from the
subdivision scheme actually passes through the points v0n; i.e., G(p+n)
=v0n. Unfortunately, as pointed out in [M], none of the existing sufficient
conditions mentioned above cover, or are even applicable to, the refine-
ment equation (1.7). In fact, other than the condition supp(C) ` {a, a+1}
none of them are applicable to any interpolatory subdivision schemes. By
numerical computation it is shown in [M] that the subdivision scheme
corresponding to (1.7) with N=8 and p=3 converges. However, such a
method cannot be used for the general setting.

The objective of this paper is to establish a sufficient condition on the
convergence of the subdivision scheme that will cover a substantially larger
class of schemes, including the interpolatory schemes given by (1.7) and
many other interpolatory schemes. We prove:

Theorem 1.1. Let C=1
2 (a+zp+(1−a) zN) be the mask for the refine-

ment equation

f(x)=af(2x)+f(2x−p)+(1−a) f(2x−N),

where 0 < a < 1, N \ 2 is even, and gcd(p, N)=1. Then

(i) The subdivision scheme with mask C converges.

(ii) The cascade algorithm converges uniformly to the associated
refinable function, which is continuous.

Based on Theorem 1.1 we prove the following more general theorem:

Theorem 1.2. Suppose that the refinement equation

f(x)=C
N

n=0
cnf(2x−n), C

n
c2n=C

n
c2n+1=1

210 YANG WANG



has a nonnegative mask C(z), with 0 < c0, cN < 1. Suppose that there exist
r < p < q in supp(C) such that gcd(q−r, p−r)=1 and 2 | q−r. Then

(i) The subdivision scheme with mask C converges.

(ii) The cascade algorithm converges uniformly to the associated
refinable function, which is continuous.

In particular, if there exist an odd p and an even q in supp(C) such that
0 < p < q and gcd(p, q)=1, then the convergence properties (i) and (ii) hold.

The author thanks Dirong Chen and Dingxuan Zhou for pointing out
some errors in the first draft, and for valuable comments and discussions.
The author also thanks Charles Micchelli for very helpful comments and
the anonymous referees for carefully reading the manuscript and suggesting
ways to improve the paper. This paper was completed when the author was
visiting the Department of Computational Science and the Center for
Wavelets, Approximation and Information Processing of the National
University of Singapore. The author thanks them for their hospitality and
generous support.

2. REDUCTIONS

In this section we make several reductions to transform the problem of
convergence of subdivision schemes into one of combinatorics and number
theory. Given the refinement equation (1.5) define the N×N generating
matrices

P0=[c2j−i]0 [ i, j < N, P1=[c2j−i+1]0 [ i, j < N, (2.1)

where the rows and columns are indexed by 0 [ i, j < N (instead of the
conventional 1 [ i, j [ N). Both P0 and P1 are row stochastic matrices, i.e.
the sum of elements of every row is 1. Suppose that f(x) is the associated
refinable function of (1.5). Let vf(x)=[f(x), f(x+1), ..., f(x+N−1)]
for x ¥ [0, 1). Then it is well known (see [DL2]) that

vf(x)=vf(ymx) Pdm · · ·Pd2Pd1 (2.2)

for any m \ 1, where x=;.

j=1 2−j dj with dj ¥ {0, 1} and y is the shift
function yx=;.

j=1 2−j dj+1. Note that [1, 1, ..., 1]T is a common 1-eigen-
vector of P0 and P1. So taking a nonsingular matrix C whose first column is
[1, ..., 1]T yields

C−1PiC=r1 f
0 Ai

s , i=0, 1. (2.3)
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Lemma 2.1. The subdivision scheme corresponding to the refinement
equation (1.5) converges if and only if the joint spectral radius r̂(A0, A1) < 1.

Proof. The convergence of the subdivision scheme is equivalent to the
convergence of the cascade algorithm, which is shown in [W] to be equiv-
alent to r̂(A0, A1) < 1. See also [DGL]. L

It is shown in [DL3] that r̂(A0, A1) < 1 if and only if all products
Adm · · ·Ad2Ad1 converge to the zero matrix, where dj ¥ {0, 1}, which in turn
is equivalent to all products Pdm · · ·Pd2Pd1 converging to a rank one matrix;
cf. [W]. This leads to our next reduction:

Lemma 2.2. The subdivision scheme corresponding to the refinement
equation (1.5) converges if and only if for all sequences (d1, d2, ...) ¥ {0, 1}N

and x ¥ RN we have

lim
mQ.

D(Pdm · · ·Pd2Pd1x)=0, (2.4)

where for any vector y=[y1, y2, ..., yN]T ¥ RN,

D(y) :=max
i

yi −min
i

yi.

Proof. Let V=RN/W be the quotient space where W is the subspace
spanned by the vector [1, 1, ..., 1]T. Since W is invariant under P0 and P1,
the two matrices induce two linear maps on V, which we denote by P̃0 and
P̃1, respectively. Observe that the (N−1)×(N−1) matrices A0, A1 are
matrix representations of P̃0, P̃1, respectively, with respect to the basis
represented by (v2, ..., vN) in which vj is the jth column of the matrix C in
(2.3). Therefore r̂(A0, A1) < 1 if and only if r̂(P̃0, P̃1) < 1, which in turn is
equivalent to limmQ. ||P̃dm · · · P̃d2 P̃d1 (z)||=0 for any sequence (d1, d2, ...) ¥
{0, 1}N and z ¥ V, where || · || is some norm on V; see [DL3]. The lemma
now follows from the fact that D(x) for x ¥ RN induces a norm on V. L

A sufficient condition for (2.4) to hold is that

D(Pdm0
· · ·Pd2Pd1x) < D(x) (2.5)

for some fixed m0 and all sequences (d1, ..., dm0
) ¥ {0, 1}m0. This follows

from the observation that if (2.5) holds then

D(Pdm0
· · ·Pd2Pd1x) [ aD(x),
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where a < 1 is given by

a= max
(d1, ..., dm0 )

max
D(x)=1

D(Pdm0
· · ·Pd2Pd1x)

D(x)
.

We will reduce the convergence problem further. Before doing so we
introduce more notations. The vectors in RN will be indexed by 0 [ i < N
rather than the conventional 1 [ i [ N. For x ¥ RN let max x :=maxi xi
and min x :=mini xi. So D(x)=max x−min x. We shall use ZN to denote
the set {0, 1, ..., N−1}. For any T ı ZN we let 1T be the vector
[x0, ..., xN−1]T such that xi=1 if i ¥ T and xi=0 otherwise. Now any
nonnegative N×N row stochastic matrix B induces a map FB: 2ZN

Q 2ZN

by

FB(T)={j ¥ ZN : (B1T)j=1}. (2.6)

Lemma 2.3. Let B be a nonnegative row stochastic matrix. Then

(i) D(Bx) [ D(x).
(ii) FB(T1) 5 FB(T2)=” if T1 5 T2=”.
(iii) Let C be another nonnegative row stochastic matrix. Then

FBC=FB p FC. (2.7)

Proof. (i) follows easily from the fact that max(Bx) [ max(x) and
min(Bx) \ min(x).

To prove (ii), let T=T1 2 T2. Then 1T=1T1+1T2 . So every entry of B(1T)=
B(1T1 )+B(1T2 ) is no greater than 1. Hence FB(T1) 5 FB(T2)=”.

Finally, FBC(T)={j: (BC1T)j=1}. Since max(C1T) [ 1, unless FC(T)
=” (in which case the lemma is obviously true) we have

FBC(T)=FB({j: (C1T)j=1})=FB p FC(T). L

For simplicity we shall use Fi to denote FPi for i=0, 1.

Lemma 2.4. Suppose that there exists an m0 > 0 such that for all
(d1, ..., dm) ¥ {0, 1}m with m > m0 and T ı ZN we have

Fdm p · · · p Fd1 (T)=” or Fdm p · · · p Fd1 (T
c)=”, (2.8)

where Tc :=ZN 0T. Then the subdivision scheme corresponding to (1.5) with
nonnegative mask converges.
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Proof. We prove that D(Pdm0
· · ·Pd1x) < D(x) for all x ¥ RN with

D(x) > 0 and (d1, d2, ..., dm0
) ¥ {0, 1}m0. Without loss of generality we

assume that max x=1 and min x=0, for we may always normalize it to
such form. Let

T={j ¥ ZN : (x)j > min x}.

Then x [ 1T, and hence Pdm0
· · ·Pd1x [ Pdm0

· · ·Pd11T. But

{j: (Pdm0
· · ·Pd11T)j=1}=Fdm0

p · · · p Fd1 (T),

{j: (Pdm0
· · ·Pd11T)j=0}=Fdm0

p · · · p Fd1 (T
c).

Condition (2.8) now yields D(Pdm0
· · ·Pd11T) < 1. Hence D(Pdm0

· · ·Pd1x) < 1,
which is sufficient for the hypothesis of Lemma 2.2 to hold, proving the
convergence. L

Corollary 2.5. The subdivision scheme corresponding to (1.5) with
nonnegative mask diverges if and only if there exist disjoint proper subsets T
and TŒ of ZN and a sequence (d1, ..., dm) ¥ {0, 1}m for some m \ 1 such that

T=Fdm p · · · p Fd1 (T) and TŒ=Fdm p · · · p Fd1 (TŒ). (2.9)

Proof. Suppose that the subdivision scheme diverges there exist a
sequence (e1, ..., en) ¥ {0, 1}n with n > 22N and a proper subset T0 of ZN

such that

Fen p · · · p Fe1 (T0) ]” and Fen p · · · p Fe1 (T
c
0) ]”.

Denote Tj :=Fej p · · · p Fe1 (T0) and Rj :=Fej p · · · p Fe1 (T
c
0) for 0 [ j [ n.

Clearly all Tj and Rj are nonempty. Since ZN has 2N−1 nonempty subsets
and n > 22N, there exist j1 < j2 < · · · < jk with k > 2N such that Tji=T for
some nonempty T … ZN for all 1 [ i [ k. Now, k > 2N implies that there
exist js < jt such that Rjs

=Rjt
=TŒ where TŒ is nonempty. Hence

Fejt
p · · · p Fejs+1

(T)=T and Fejt
p · · · p Fejs+1

(TŒ)=TŒ.

Now Tj 5 Rj=” for all j by Lemma 2.3(ii). So in particular T 5 TŒ=”.
(2.9) follows by setting (d1, ..., dm)=(ejt , ..., ejs+1).

Conversely, suppose that (2.9) holds. By taking x=1T we then have

D((Pdm · · ·Pd1 )
n x)=1

for all n \ 0. This shows that the subdivision scheme diverges. L
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We compute F0 and F1 explicitly. For the refinement equation (1.5) with
mask supp(C) we denote

S=supp(C), S0=supp(C) 5 2Z, S1=supp(C) 5 (2Z+1).

Define

Y(T)=3 3
q ¥ S0

(2T−q)4 2 3 3
p ¥ S1

(2T−p)4 .

Lemma 2.6. For any T ı ZN we have

F0(T)=Y(T) 5 ZN, F1(T)=(Y(T)+1) 5 ZN. (2.10)

Furthermore, for any (d1, ..., dm) ¥ {0, 1}m we have

Fd1 p · · · p Fdm (T)=(Ym(T)+k) 5 ZN, (2.11)

where k=;m−1
j=0 dj2 j.

Proof. We first prove (2.10). Write P0=[bij] :=[c2j− i]
N−1
i, j=0. Let Ii=

{j: bij ] 0}. It is easy to check that

Ii=˛
S0+i

2
, i=2r

S1+i
2

, i=2r+1.

Now i ¥ F0(T) if and only if (P01T)i=1, which in turn holds if and only if
Ii ı T. For even i, this is equivalent to 1

2 (S0+i) ı T or i ¥4q ¥ S0 (2T−q).
Similarly, for odd i we have i ¥ F0(T) if and only if i ¥4p ¥ S1 (2T−p). This
proves (2.10) for F0(T). For F1(T) the proof is essentially identical.

To prove (2.11) we first let Y0=Y and Y1=Y+1. Then one easily
checks that

Yd1 p · · · pYdm=Y
m+k, k= C

m−1

j=0
dj2 j.

But Yd1 p · · · pYdm (T)=Yd1 p · · · pYdm (T) 5 ZN, proving (2.11). L
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3. PROOF OF THEOREMS

We first prove Theorem 1.1, which is essential to proving other results in
the paper. The refinement equation (1.7) has S0={0, N} and S1={p},
where N=2M and gcd(p, N)=1. The map Y is given by

Y(T)=(2T 5 (2T−N)) 2 (2T−p). (3.1)

A key observation is that if f(x) satisfies (1.7) then the function f̂(x) :=
f(N−x) satisfies the ‘‘reversed’’ refinement equation

f̂(x)=(1−a) f̂(2x)+f̂(2x−(N−p))+af̂(2x−N), (3.2)

which has mask Ĉ(Z)=ZNC(Z−1) and supp(Ĉ)={0, N−p, N}. The
subdivision scheme and the cascade algorithm converge for (1.7) if and
only if they converge for (3.2). For any subset T of integers define
T̂ :=N−T and

Ŷ(T)=(2T 5 (2T−N)) 2 (2T−N+p).

Then one verifies that

Ŷ(T̂)=Y(T)5 . (3.3)

Furthermore, suppose that T ı ZN then

F0(T)5 =Ŷ(T̂) 5 (ZN+1), F1(T)5 =(Ŷ(T̂)−1) 5 (ZN+1). (3.4)

It follows from iterating (3.3) and (3.4) that

Fd(T)5 =(Ŷm(T̂)−k) 5 (ZN+1), (3.5)

for all d=(d1, ..., dm) ¥ {0, 1}m and k=;m−1
j=0 2jdj, whereFd :=Fd1 p · · · pFdm .

Lemma 3.1. Let T be a subset of Z and suppose that p−r ¨ T. Then
np−2mr ¨Ym(T) for all 1 [ n [ 2m.

Proof. Since Y(T) ı 2T 2 (2T−p) with the union being disjoint, if
a ¨ T then 2a, 2a−p ¨Y(T) . Hence 2p−2r, p−2r ¨Y(T). This leads to

2(p−2r), 2(p−2r)−p, 2(2p−2r), 2(2p−2r)−p ¨Y2(T).

In other words, np−4r ¨Y2(T) for all 1 [ n [ 4. This iterative argument
proves the lemma, by induction on m. L
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Proof of Theorem 1.1. Assume that the subdivision scheme diverges.
Then by Corollary 2.5 there exist a sequence (d1, ..., dmŒ) and disjoint
nonempty sets T, TŒ … ZN such that

Fd1 p · · · p FdmŒ (T)=T and Fd1 p · · · p FdmŒ (TŒ)=TŒ.

It follows from Lemma 2.6 that

T=(YmŒ(T)+kŒ) 5 ZN and TŒ=(YmŒ(TŒ)+kŒ) 5 ZN, (3.6)

where kŒ=;mŒ−1
j=0 2 jdj. Denote d=(d1, ..., dmŒ) and Fd=Fd1 p · · · p FdmŒ .

Then iterations yield Fq
d(T)=T and Fq

d(TŒ)=TŒ for all q \ 0. Set q=
(N−p) pf((N−p) p) t and m=qmŒ where f(n) is Euler’s function of the
number of elements in Zn that are coprime with n, and t \ 1. Then Lemma
2.6 yields

T=(Ym(T)+km) 5 ZN and TŒ=(Ym(TŒ)+km) 5 ZN, (3.7)

where km=kŒ;q−1
j=0 2mŒj. Note that 2f((N−p) p) — 1 (mod (N−p) p). We

prove that

km — 0 (mod (N−p) p), 2m — 1 (mod (N−p) p). (3.8)

The latter congruence is rather clear. For the first congruence,

km=kŒ C
q−1

j=0
2mŒj

=kŒ C
(N−p) pt−1

l=0
C

f((N−p) p)−1

j=0
2mŒj+mŒlf((N−p) p)

=kŒ C
(N−p) pt−1

l=0
C

f((N−p) p)−1

j=0
2mŒj2mŒlf((N−p) p)

— kŒ C
(N−p) pt−1

l=0
C

f((N−p) p)−1

j=0
2mŒj (mod (N−p) p)

— kŒ(N−p) pt C
f((N−p) p)−1

j=0
2mŒj (mod (N−p) p)

— 0 (mod (N−p) p).

We derive a contradiction using Lemma 3.1. To do so we first without loss
of generality assume that p < N−p and divide the proof into three cases.

Case 1. (d1, ..., dmŒ) ] (0, ..., 0) and (d1, ..., dmŒ) ] (1, ..., 1).

SUBDIVISION SCHEMES AND REFINEMENT EQUATIONS 217



In this case we may choose t sufficiently large so that km > N and
2m−km > N. We prove that either T=” or TŒ=”, hence a contradiction.

Suppose that p−r ¨ T for some 0 < r [ p. Then by Lemma 3.1 np−
2mr ¨Ym(T) for all 1 [ n [ 2m. Hence np−2mr+km ¨ T for all 1 [ n [ rm.
The fact that km > N together with (3.8) imply that no element of the form
lp−r is in T. In other words, if a ¨ T for some 0 [ a < p then T contains no
element congruent to a modulo p.

The key idea is to apply (3.5) by considering the ‘‘reversed’’ refinement
equation (3.2), which yields

T̂=(Ŷm(T̂)−km) 5 (ZN+1) and T̂Œ=(Ŷm(T̂Œ)−km) 5 (ZN+1).
(3.9)

Suppose that N−p−r ¨ T̂. Then again Lemma 3.1 implies that n(N−p)−
2mr ¨ Ŷm(T̂) for all 1 [ n [ 2m. Therefore by (3.9) n(N−p)−2mr−km
¨ T̂. It follows again from (3.8) and the fact 2m−km > N that T̂ 5 ZN

contains no element of the form n(N−p)−r. In other words, if a ¨ T̂ for
some 1 [ a [ N−p then T̂ contains no element congruent to a modulo
N−p.

Now by assumption p < N−p. Suppose that a ¨ T for some 0 [ a < p.
Then lp+a ¨ T for all l. In particular l0 p+a ¨ T where N−p < l0 p+a
< N. Hence N−l0 p−a ¨ T̂. Observe that 1 [ N−l0 p−a [ p < N−p.
So (N−l0 p−a)+(N−p) ¨ T̂, which yields aŒ=(l0+1) p+a−N ¨ T.
Since 0 [ aŒ < p, this implies that T contains no element congruent to
aŒ modulo p.

For each 0 [ a < p define the map g(a)=aŒ as above. Then 0 [

g(a) < p and aŒ — a−N (modp). But N and p are coprime. This means
{g j(a): 0 [ j < p}={0, 1, ..., p−1}. It follows that if for some 0 [ a < p we
have a ¨ T then {0, 1, ..., p−1} 5 T=”. But we have already shown that
if a ¨ T for any 0 [ a < p then T contains no element congruent to
a (modp). So T=”. The same statement holds for TŒ. Since T and TŒ are
disjoint, we infer that either T=” or TŒ=”, as a ¨ T or a ¨ TŒ for any a.
This gives a contradiction.

Case 2. (d1, ..., dmŒ)=(0, 0, ..., 0).

In this case km=0. We choose m so that 2m > N. The proof for Case 1
needs to be modified for Case 2, because now we can only infer that if
a ¨ T for some 1 [ a < p (as opposed to 0 [ a < p in Case 1) then T
contains no element congruent to a (modp). However, in this case, if p ¨ T
then lp ¨ T for l \ 1 (but not necessarily l=0).

Similarly, if a ¨ T̂ for some 1 [ a < N−p (as opposed to 1 [ a [ N−p)
then T̂ contains no element congruent to a modulo (N−p).
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By assumption p < N−p. For each 1 [ a [ p such that a ¨ T we define
g(a) ¨ T with 0 [ g(a) < p as follows: a+lp ¨ T for all l \ 0. So b=a+
l0 p ¨ T where N−p [ b < N. This yields N−b ¨ T̂. But 1 [ N−b [ p <
N−p. It follows that b1=N−b+(N−p) ¨ T̂. Therefore aŒ=N−b1=a+
(l0+1) p−N ¨ T. We set g(a)=aŒ. In addition to g(a) ¨ T we have
0 [ g(a) < p and g(a) — a−N (modp). In particular, if a – N (modp) then
g(a) > 0 and hence g2(a)=g(g(a)) ¨ T.

Now, p ¨ T or p ¨ TŒ. So we may assume without loss of generality that
p ¨ T. Observe that g j(p) — p−jN — −jN (modp). Since N and p are
coprime, g j(p) ] 0 for 0 [ j < p. They are all distinct since they are not
congruent modulo p, and none of them are in T. So {1, 2, ..., p} 5 T=”.
Finally gp(p)=0 because gp(p) — 0 (modp), yielding 0 ¨ T. Therefore
T=”, a contradiction.

Case 3. (d1, ..., dm)=(1, 1, ..., 1).

In this case km=2m−1. We choose m so that 2m > N. Again the proof
for Case 1 needs to be modified. Note that if a ¨ T for some 0 [ a < p then
we still infer that T contains no element congruent to a (modp). However
we can only infer that if a ¨ T̂ for some 1 < a [ N−p (as opposed to
1 [ a [ N−p) then T̂ contains no element congruent to a modulo (N−p).

Nonetheless, this problem can be overcome easily. Note that the assump-
tion p < N−p means there are only two elements in ZN that are congruent
to 1 (mod(N−p)): 1 and N−p+1. Since one of T̂ and T̂Œ does not contain
N−p+1, say, N−p+1 ¨ T̂, it is still a true statement that if a ¨ T̂ for some
1 [ a [ N−p then T̂ contains no element congruent to a (mod(N−p)).

Clearly N−p+1 ¨ T̂ is equivalent to p−1 ¨ T. The proof in Case 1 now
carries through to show that T=”, proving the theorem in this case. L

We now prove the more general Theorem 1.2, which follows from the
results of Jia and Zhou [JZ].

Proof of Theorem 1.2. Observe that by Theorem 1.1 the subdivision
scheme associated with the mask

C1(z)=
1
4
+

1
2
zp−r+

1
4
zq−r

converges and hence so does the subdivision scheme with mask

C2(z)=
1
4
z r+

1
2
zp+

1
4
zq
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since it is a simple shift from C1. By Theorem 1.2 of Jia and Zhou [JZ] the
subdivision scheme with mask C(z)=;N

n=0 cnzn converges as long as
cr, cp, cq > 0 and the sum rule ; n c2n=; n c2n+1=1 is satisfied, indepen-
dent of the actual value of c −ns. This proves the convergence of the subdivi-
sion schemes for the given mask, and the convergence of the cascade
algorithm also follows. L
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